Χρησιμοποιούμε cookies για να σας παρέχουμε καλύτερες υπηρεσίες. Με τη χρήση αυτού του ιστότοπου, αποδέχεστε τους όρους χρήσης και τη χρήση των cookies.
Data Analysis and Machine - Statistical Learning
Πανεπιστήμιο Κρήτης
Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών, Τμήμα Επιστήμης Υπολογιστών Πανεπιστημίου Κρήτης & ΙΤΕ.
Full Time

All courses are taught in English.  The master project  is also written in English. To complete the programme 90 ECTS are required of which 70 ECTS is from course work and 20 ECTS from the Master Project.  The master project is mandatory for all students. The courses are divided in: PreparatoryCore and Elective. Preparatory are advanced undergraduate courses which might be required  to fill possible gaps necessary to follow the programme. Each Preparatory course is 5 ECTS which includes 2hrs/week lectures plus homework and/or lab assignments and a final exam and/or project. A maximum of 10 ECTS can be credited from preparatory courses. There are three Core courses which are mandatory for all students and account for total of 30 ECTS. The remaining required ECTS can be completed by taking Elective courses.   Core and Elective courses are 10 ECTS each, and  includes 4hrs/week lectures plus homework and/or lab assignments and a final exam and/or project. 

Indicative Curriculum

Semester A (20-30 ECTS)

    • Preparatory Courses: Data Structures(5 ECTS), Numerical Algorithms(5 ECTS), Probability Theory(5 ECTS)

    • Core Courses: Mathematical & Computational Statistics (10 ECTS), Introduction to Data Science(10 ECTS)

Semester B (30 ECTS)

    • Core Courses: Introduction to Machine Learning(10 ECTS)

    • Two(2) elective courses with 10 ECTS/course

Semester C (30 – 40 ECTS)

    • Master Project(20 ECTS)

    • One-two (1-2) elective courses with 10 ECTS/course

Έχετε να μας προτείνετε κάποια διόρθωση; Επικοινωνήστε μαζί μας στο info eduguide.gr


Μεταπτυχιακά & Πτυχία σε Ελλάδα και Κύπρο